
Section S19.1 Pure Species with Linear Association 1

S19.1 INTRODUCTORY COMMENTS1

This is a supplement to Elliott and Lira Chapter 19. This material shows the development of the associating
van der Waals equaition in more detail, and provides more background on the ESD equation of state.

The Helmholtz contributions to the fugacity coefficient can be expressed as

S-19.1

Because we can write Z – 1 = Zrep + Zatt + Zchem + Zbond we assign an one-to one correspondence of the Z
term with (A – Aig)TV = Arep + Aatt + Achem + Abond, and  e.g.

S-19.2

S-19.3

S19.2 PURE SPECIES WITH LINEAR ASSOCIATION

Some species like water and alcohols form extended networks in solutions. The hydrogen bonding reactions
usually occur so quickly that they can be assumed to be at equilibrium all the time.2 It is desirable to investi-
gate the implications of a more rigorous approach for pure species. Although the approach at first appears
overwhelming, we always have just enough reaction constraints that the Gibbs phase rule works out the
same for an associating component as for a single component.

We begin by describing the premise on which the model is based. We assume that association will occur
by formation of linear chains of species. Dimers, trimers, tetramers, etc. will all form in a pure fluid, and the
chains that form can be of infinite length. This does not require that long chains exist; the assumption simply
does not forbid such behavior. Whether such behavior is found will be determined by the resulting model.
Further, it should be recognized that the association that we describe is not static. The associations are truly
reversible, and undergo frequent formation/decompositions; the equilibrium distributions simply tell us how
many of a certain species will exist at a given instant. As one associated complex decomposes, another
forms.

We need to model the chemical equilibria occurring in a given phase. The chemical formation of a
dimer would be represented by

where the equilibrium constant is Ka2. The use of subscript 2 reminds us that this equilibrium constant is for
formation of dimer. We will define the true mole fraction as the mole fraction of each specie (monomer,
dimer, etc.) that exists in solution. The superficial composition is the overall mole fraction in solution based
on all species being monomer, which for a pure fluid is unity. The monomer and dimer appear very often
in the derivations that follow so we also use subscripts M and D, respectively. However, the use of numer-
ical subscripts is also preserved for use in generalized formulas, and occasionally both notation schemes are
used within a given equation. From the reaction equilibrium constraint,

1. Supplement revised 5/13/17.
2. An exception is the reaction of formaldehyde with water, c. Hasse and Maurer, Fluid Phase Equilibria 64:185 (1991)
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where xM represents the true mole fraction of monomer and xD represents the true mole fraction of dimer.
Other reactions that can occur include

and linear association is assumed to continue to increasing chain sizes.

Let us assume that the ratio of Kai  is the same for all i. Note that the  are based on the

true mole fractions of oligomers in the mixture not the superficial mole fraction one would obtain by assum-
ing presence of just monomer. Empirical calculations show that this is a reasonable assumption. It basically
corresponds to the equilibrium being the same for each step in the oligomerization process. But it does rep-
resent a significant assumption that may not be accurate for all situations. This ratio appears often in the fol-
lowing derivation so it is helpful to abbreviate it as

Kai   q S-19.4

where  and q are variables defined below.3 The point of this assumption is that it facilitates several substan-
tial simplifications through our material balance relations. Including this assumption, Eqn. S- becomes x2  xM
(xM·q). Substitution of the expression for x2 into the formula for x3, yields x3    xM (xM·q)2. Substitution
continues to higher oligomers resulting in the general formula,

xi1   xM (xM·q) i S-19.5

Mass Balances    

We can use material balances to obtain two simple relations between the true number of moles in the solu-
tion, nT, and the superficial number of moles that we would expect if there was no association,4 no. Note that
no is the number of moles one would compute based on dividing the mass of solution by the molecular
weight of a monomer as taught in introductory chemistry. For example, in 100cm3 of water one would esti-
mate 

no  100 cm3  1.0 g/cm3 /(18 g/mole)  5.556 moles

But how many moles of H2O monomer do you think truly exist in that beaker of water? We will return to
this question shortly. Note that each i-mer contains “i” monomers, such that the contribution to the superfi-
cial number of moles is ini. Note also that the true mole fractions, xi, are given by ni /n T , but it may not look
so simple at first.

3. The varibable  in the first edition of Introductory Chemical Engineering Thermodynamics is the same as  in the second 
edition. Note that  = lit, where lit is the variable common in literature. The reason for defining this set of variables in 

terms of two will become clear later when we show that q  xM. 

4. Here we choose to use subscript o to clearly distinguish the notation for superficial moles, even though it would be the 
quantity normally reported from a macroscopic experiment.

A A2+   =  A3           Ka3 x3

xM̂Mx2̂2PKa3

̂3P
----------------------------------------- xMx2

Ka3P̂M̂2

̂3P
----------------------------
 
 
 

= =

A A3+   =  A4           Ka4 x4

xM̂Mx3̂3PKa4

̂4P
----------------------------------------- xMx3

Ka4P̂M̂3

̂4P
----------------------------
 
 
 

= =

A A4+   =  A5           Ka5 x5

xM̂Mx4̂4PKa5

̂5P
----------------------------------------- xMx4

Ka5P̂M̂4

̂5P
----------------------------
 
 
 

= =

P
P
------

̂M̂i 1–

̂i

-------------------- ̂i

P
P
------

̂M̂i 1–

̂i

--------------------



Section S19.2 Pure Species with Linear Association 3

S-19.6

Substituting Eqn. S-19.5

 = xM nT [12(·qxM)  3(·qxM)2  4(·qxM)3  ...] 

This series may not appear familiar but it is a common converging series. Referring to series formu-
las in a math handbook, we find that 

nT xM [1 2(·qxM) 3(·qxM)24(·qxM)3 + ...]  nT xM [1/(1 ·qxM)2]

S-19.7

Since the mole fractions must sum to unity, we can write a second balance, and using Eqn. S-19.5
for xi,

 S-19.8

and again recognizing the series, 

1  xM [1 (·qxM)  (·qxM)2 + (·qxM)3 …]  xM [1/(1  ·qxM)]

 S-19.9

Substituting xM for (1 xM·q) in Eqn. S-19.7 results in,

no / nT  xM /xM
2  1/xM 

   (pure chain-forming fluid) S-19.10

This equation turns out to be extremely important. It makes clear that the properties of the mixture
are closely related to the properties of the monomer. The next step in our derivation is to reconsider
Eqn. S-19.4, this time focusing on the left-hand side. The pressure term and its relation to the equa-
tion of state are particularly interesting. Before we take this step, let’s work through some of the
implications of what we have derived thus far. There are a number of insights that can be gained
based simply on the material balances.

Interpretations of Molar Densities

At this stage we get to some of the really confusing aspects of associating fluids. For instance, what
is density? Mass density is the number of grams divided by the volume. But what about the molar
density? We should take the true number of moles and divide by the volume. The true number of
moles in our system depends on the degree of association, nT  xMno. We do not know the number
of moles until we know xM. What we do know is that what we call the superficial molar density,

no i ni
i
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i.e., the molar density that we would get if we divided the mass density by the molecular weight of the
monomer. The superficial molar density is the molar density that would be reported from an experiment
where all species are assumed to be monomer, which is the commonly applied measurement technique. To
relate the true molar density and the superficial molar density we seek a relationship between xM, T, and 
where  is the superficial density. We develop this relation by means of the equation of state. In order to
develop the equation of state, we must make additional assumptions about the combining rules.

S-19.11

Combining/Mixing Rules

Before we get into the specifics of developing an equation of state, we can anticipate the need for determin-
ing equation of state parameters for the mixture. These relations can be developed before the actual equation
of state, and are independent of the actual equation of state. Heidemann and Prausnitz5 show that some very
simple relations result when simplifying assumptions are made on the attractive and size parameters for con-
ventional equation of state mixing rules. These assumptions and simplifications are presented here.

Size parameter, b. To develop an equation of state, we must make approximations about the properties
of the associating species. For instance, we can assume that the volume of a dimer is twice that of the mono-
mer. The volume of the trimer would be three times the volume of a monomer. In terms of the molecular size
parameter

bi  i·bM S-19.12

Inserting this into the normal mixing rule for a mixture of monomers, dimers, trimers, etc., and incorporating
Eqn. S-19.7,

S-19.13

Packing fraction, bM. The representation of density in an equation of state can always be rearranged
into the dimensionless packing fraction. Can you anticipate the special property exhibited by the packing
fraction? Let’s see what happens when we combine Eqn. S-19.13 with Eqn. S-19.11. 

S-19.14

Note that bM is the packing fraction we would have computed if we neglected association entirely. Thus we
are free to apply either form interchangeably. The packing fraction is entirely independent of the extent of
association. This result might seem obvious if you remember the definition of packing fraction. It is the vol-
ume occupied by molecules divided by the total volume. By setting the volume of an i-mer to be i times the
volume of the monomer, we are assuming that there is no overlap caused by association. So the volumes of

5. Heidemann, R. A. and Prausnitz, J. M., Proc. Nat. Acad. Sci., 73:1773(1976).
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the molecules are the same before or after association. When you look at it this way, it should be no surprise
that the packing fraction is constant.

Attractive parameter, a. If the molecular interactions are pairwise additive, then it is reasonable to
assume that the interaction energy for a pair of dimers should be four times that of a monomer-monomer inter-
action, and the trimer should be nine times, as shown in Fig. S-19.6. Therefore, aD 4aM, a3  9aM, a4 
16aM etc. This means , or

S-19.15

The normal combining rule is ,where it is reasonable to set kij  0 for all ij. This means,

 S-19.16

In addition, when kij  0 for all ij, the normal mixing rule, , becomes ,

which by substituting Eqn. S-19.15 becomes , which by substituting Eqn. S-19.7

becomes,

S-19.17

S19.3 A VAN DER WAALS H-BONDING MODEL

For purposes of illustration, we return to the van der Waals equation, as usual when considering a new appli-
cation. The principal modification is to write out explicitly what is meant by terms like density and nT. The
pressure will be determined by the true number of moles and the true density. We introduce the true com-
pressibility factor, ZT  P VT / RT.

S-19.18

where a and b are the mixture parameters given by the mixing rules above. We can obtain the superficial
compressibility factor if we multiply both sides of Eqn. S-19.18 by nT /no. However, since nT /no xM, we
have

S-19.19

Figure S-19.6 Illustration that aDD  4 aMM and a33  9 aMM are 

reasonable  by adding the number of pair interactions.
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Thus the equation of state differs from the original van der Waals only in the incorporation of the factor xM.
However, let us investigate how the right-hand side can be written in terms of aM, bM, and T. Recalling the
simplification that occurred for the packing fraction in the repulsive term, a similar simplification occurs for

the attractive term using Eqn. S-19.11 and Eqn. S-19.17 becomes . The

equation of state then becomes

S-19.20

In this form we may define contributions to the compressibility factor such that Z  1  Zrep  Z att  Z chem

where there is a one-to-one correspondence with terms of the right-most expression in Eqn. S-19.20. Zrep

and Z att are exactly as we have used them before. We may clearly identify Zchem.

 S-19.21

Note that in a fluid that does not associate, xM  1, so the standard van der Waals equation is  recovered. 

Solving the Equation of State for Superficial Density

If we know the size and attractive parameters for the model, and the degree of association, we can solve the

equation of state. To put the equation of state in a nondimensional form, we define , and

. Multiplying Eqn. 15.48 by bM, 

S-19.22

Rearrangement yields6

S-19.23

If we knew xM (or ·q in Eqn. S-19.9) in terms of temperature and density, then solving this problem would
simplify to solving for the pressure of a mixture of known composition with known mixing rules. In other
words, solving for Z is entirely analogous to our previous applications of equations of state. We would sim-
ply have the intermediate step of computing xM before computing Z. It sounds more complicated obviously,
but with a computer, one would hardly notice the difference in computational speed. Let’s derive an approx-
imate relationship for xM. We now explore and develop the procedure to determine xM by looking at the
functionality of ·q.

Fugacity Coefficient for an Associating Species

For any practical applications, we need the superficial fugacity, which can be found quite directly using Eqn.
S-19.14; if we calculate the fugacity of the monomer, this will also be the superficial fugacity. We have used
this procedure already in Example 15.4 on page 591, but now we no longer need to assume the true species
form an ideal solution. For a pure, associating species we start by adapting of Eqn. 15.33 by writing the
equation in terms of the true mole fractions, and true densities,

6. An alternate form of the same equation appears later as Eqn. 15.65.
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S-19.24

where we have already substituted . Now, for the monomer,

S-19.25

Now, recognize ZT  PV/nTRT  PV/noRT·(no/nT)  Z/xM. Also, using Eqn. S-19.11

S-19.26

Now, applying Eqn. S-19.14, and rearranging the repulsive term involving xM,

S-19.27

Determination of xM for van der Waals’ Equation

Returning to the left-hand side of Eqn. S-19.4, we see that the function ·q involves the ratio

. To evaluate this expression, we must next solve for the fugacity coefficient of a compo-

nent in a mixture in accordance with our new EOS. Then we can substitute the expression back into
the reaction equilibrium equation and solve for xM. As a specific example of the formula, consider

the conversion of monomer to dimer, the first step in the oligomerization, represented by .

Writing the true fugacity coefficients in terms of logarithms,

S-19.28

Recall that bD 2 bM by Eqn. S-19.12 and aDj2jaM, and aMj  jaM by Eqn. S-19.16. Therefore

S-19.29

S-19.30

An analogous derivation for other oligomers gives
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S-19.31

Since this expression of fugacity coefficients is independent of i, referring back to Eqn. S-19.4, Ka
is the same for all species.

Finally ·q   S-19.32

Now we split our definition of ·q, by defining

S-19.33

 is a function of T, ·q can now be substituted back into Eqn. S-19.9, while recognizing that q 
xM.

Solving the quadratic for the only reasonable root gives

 (pure chain-forming fluid) S-19.34

In principle, our problem is now solved. Note that the only difference between Eqn. S-19.20
and the original van der Waals equation is the factor of xM in the repulsive term, and we now have
an equation to determine xM at a given temperature and density. Two new parameters must be intro-
duced, however, to characterize  and its dependency on temperature. Since  is closely related to
Ka, we will need to consider the van’t Hoff relation to characterize the dependence of Ka on T. The
temperature dependence of the hydrogen bonding may be given by the form of the van’t Hoff equa-
tion, which is simplified to be

S-19.35

where (Ka)c is the value of the equilibrium constant at the critical point, and the constant H is
found by fitting the vapor pressure curve. The explanation for this form of the equation is given
in Section S-19.4 but it is easy to see that the value approaches zero at infinite temperature and is
equal to the critical value at the critical temperature. Substitution into Eqn. S-19.33 gives

S-19.36

Ka'  RTcKac/( bM) is the dimensionless form of (Ka)c.
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Solving the Equation of State for Density

We can see that Eqn. S-19.23 is not truly a cubic in density because xM depends on density. Also, its func-
tional dependence is nonlinear, which makes implementation more difficult. However,  is a monotonic
function of density, and successive substitution of density has been found to quickly yield converged values
for density. The algorithm is given in Fig. S-19.7.

Fitting the Constants in the Equation of State

So far, we have assumed that the constants needed for a fluid are available. However, the associating fluid
model must be used to obtain the parameter values. To obtain approximate hydrogen bonding parameters,7

we can use the same approach applied for nonassociating systems. Rearranging Eqn. S-19.23 in terms of the
compressibility factor.

S-19.37

Writing out (Z Zc)
3, which equals 0 at the calculated critical point:

S-19.38

Comparing term-by-term with the previous equation, we find at the critical point:

S-19.39

7. Note: Rigorously matching the critical point requires recognizing that xM is a function of density, so the above method is 

only approximate in terms of matching the critical point. On the other hand, the characterization obtained in this way 
provides reasonable accuracy for an introduction. Problem 19.13 describes the route to rigorously matching the critical 
point.
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Figure S-19.7 Flowsheet for calculating density by the van der Waals pure associating chain 
fluid model.
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S-19.40

S-19.41

where the superscript EOS has been added to explicitly show that this is the value predicted by the equation
of state. These three equations differ from the original van der Waals equation only by the xM appearing in
Eqn. S-19.39. Plugging S-19.40 into S-19.41, we find

S-19.42

Using this result in Eqn. S-19.39,

S-19.43

where xM would have a value of unity in a nonassociating system. Plugging this into S-19.42, we find

S-19.44

and into S-19.40,

S-19.45

Finding xM from Zc

Experimental values of Zc cannot be used directly in Eqn. S-19.43, because we know that the value of Zc 
0.375 predicted by the van der Waals equation is significantly in error for nonassociating species. For argon,
krypton, and xenon, Zc is approximately 0.29. Therefore, this equation is systematically in error even for
spherical nonassociating fluids. To account for the systematic error of the equation, one can assume the form
of Eqn. S-19.43 is correct, but the coefficient is incorrect; thus, we could preserve the proportionality

. This implies that the ratio of the experimental Zc to , the critical compressibility factor
of a nonassociating homomorph8 gives (xM)c,

S-19.46

where several common species and homomophs are listed in Table S-19.1. 

From (xM)c we can use Eqns. S-19.44 and S-19.45 to determine aM and bM. We also can use Eqn. S-
19.9, and noting that q xM,

S-19.47

since

8. Homomorph means having the same shape. In this context it refers to a hydrocarbon having the same size and branching 
(e.g., isobutane is a homomorph of isopropanol).
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S-19.48

where Ka'  RTcKac/( b). Noting from Eqn. S-19.42 that bMc  Bc/Zc  1/3 for the van der Waals EOS
gives:

S-19.49

This allows Ka' to be determined. The temperature dependence of the hydrogen bonding is given by the
van’t Hoff equation with CP  R, which is simplified to give Eqn. S-19.35 above. The last constant, H in
Eqn. S-19.35, is found by fitting the vapor pressure curve. The justification for the form of the equation is
given in Section S-19.4. nonpolar fluids tend to have a slight downward curvature to the plot of ln Psat ver-
sus 1/T. Associating fluids actually have a little less curvature, and by fitting the vapor pressure curve, a
parameter value for H can be obtained.

Helmholtz Energy and the Fugacity Coefficient for 
van der Waals   

There is a connection between Helmholtz energy and the fugacity coefficient that we introduced in Eqns.
19.1-19.3. We will use these relations to identify the chemical contribution to the Helmholtz energy.

To see the desired relation for the association term, we need to rearrange Eqn. S-19.27 to identify all the
terms except association, and thus identify the relationship between the Helmholtz departure and the associ-
ation. Adding and subtracting xM in the form xM(1 b)/(1 bM) xM,

S-19.50

Adding and subtracting one, in the form 1 (1 bM)/(1 bM),

S-19.51

Then matching the terms one-to-one with their origin:

Table 19.1 Homomorphs for several associating compounds, and (xM)c for the associating 

van der Waals model.

Specie Zc Homomorph (xM)c

ethanol 0.248 propane 0.281 0.883

methanol 0.224 ethane 0.284 0.789

water 0.233 methane 0.288 0.809
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Therefore, the unmatched terms are the contribution to Helmholtz departure due to association,

S-19.52

This derivation has been tedious, but the extension to mixtures and the adaptation to other equations of state
should now be straightforward. 

Applications to Pure Fluids

Table S-19.2 summarizes results of Eqns. 15.72–15.76 for three compounds. Note that 0.300/0.375  0.233/
0.291 maintaining the ratio of Eqn. 15.74. All that remains is to specify a value for the parameter H in Eqn.
15.63. One reasonable approach would be to set the energy of hydrogen bonding equal to a typical value like
20 kJ/mole. For water, this would result in H  3.716. Other approaches to characterizing H are discussed in
the homework problems. Given the values for these parameters, you should be able to implement the algo-
rithm of Fig. 15.7 with no difficulty.

S19.4 THE ESD EQUATION FOR ASSOCIATING FLUIDS

The van der Waals model has served well to introduce the methods used in developing a model for associat-
ing fluids, however, it has several shortcomings when considering quantitative modeling. One alternative
would be to adapt the Peng-Robinson equation. This option is developed as a homework problem. That approach
can provide improved accuracy for vapor-liquid equilibria, but a consistent extension to liquid-liquid equilibria

in systems like hydrocarbons with water has been difficult to develop.9 Part of the problem with the Peng-
Robinson equation is the inaccurate form of the van der Waals repulsive term. Heidemann and Prausnitz10

corrected this shortcoming in their analysis of associating fluids, but their analysis applied only to pure flu-
ids. A number of other authors have pursued adaptations which correct the repulsive term or address consis-
tent models for vapor-liquid-liquid equilibria, but we will limit our discussion to two: the ESD equation,11

and the SAFT equation.12 In this section we introduce the ESD equation. The ESD equation has the follow-
ing features:

1. The equation of state is cubic, which permits us to retain the principles we have developed for solv-
ing and applying the equation of state.

2. The equation of state explicitly represents the effect of shape for nonpolar molecules. This means
that extension of the equation to polymers is straightforward. This additional flexibility requires an
additional characteristic parameter; however the shape parameter has been correlated in terms of the
acentric factor for nonassociating fluids, much like the parameter in the Peng-Robinson equation.

Table 19.2 Role of association in depressing Zc according to the vdW-HB EOS

Component Ka'KacRTc/(bP°)  xMc    a/bRTc
 Zc

 (calculated)
 Zc

(experiment)

Argon 0 1.000 3.375 0.375 0.291

Water 0.620 0.801 2.703 0.300 0.233

Acetonitrile 1.843 0.632 2.134 0.237 0.184

9. Raymond, M. B. Ph.D. Thesis, University of Akron, 1998.
10. Heidemann, R. A. and Prausnitz, J. M. Proc Nat Acad Sci, 73:17773 (1976).
11. Elliott, J. R., Suresh, S. J., Donohue, M. D. Ind. Eng. Chem. Res., 29:1476 (1990).
12. Chapman, W. G., Jackson, G., Gubbins, K. E., Radosz, M., Ind. Eng. Chem. Res. 29:1709 (1990).

A
chem
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3. The equation of state has been developed by modeling computer simulations, and thus should cap-
ture the essential physics of size, shape, and hydrogen bonding.

Noting the detailed development for the van der Waals equation provided above, we will rapidly move
through the adaptation to the ESD equation. All of the steps are essentially equivalent to those for the van
der Waals equation. The one additional complication is that the shape parameter and H cannot be determined
independently for an associating fluid. This is because the experimental acentric factor is a measure of both
shape and hydrogen bonding for associating systems,13 and thus the acentric factor is insufficient for deter-
mining the shape parameter. Other features include improvement of the assumption of a temperature-inde-
pendent value for H in the van’t Hoff Eqn. S-19.35, which ignores the change in heat capacity due to
temperature-dependent association, and the possibility of branching and its impact on the assumptions about
q and aij. 

The equation proposed by Elliott et al. (1990) is:

S-19.53

where 

, therefore,   b  

, a “shape factor” which represents the effect of nonsphericity on the repulsive term.

q  11.90476(c 1)   is a shape factor which represents the effect of nonsphericity on the

attractive term.

<c>  c·b·  

Yij  exp(ij /kT) 1.0617

<qY> <qYb>  

ij  the energy of disperse attraction (equivalent to well-depth of a square-well potential). As

before kij is zero for monomer-oligomer interactions.

<Y>  <Yb>

The most important modification over the van der Waals equation is the inclusion of the shape factor, c,
in the repulsive term of the EOS. Elliott et al. illustrated that this form for the repulsive term significantly
improves agreement with molecular simulation data for hard spheres14 and chains15 relative to the repulsive
term assumed in the van der Waals or Peng-Robinson equations, as shown in Fig. 19.8. Note that the van der
Waals and Peng-Robinson estimates are the same regardless of chain length whereas the ESD equation sets

13. Recall that the acentric factor is a measure of the slope of the vapor pressure line. For nonpolar substances this is deter-
mined by shape. For associating species, the association is also a function of temperature, so it also changes along the 
vapor pressure curve, also affecting the slope.

14. Erpenpeck, J. J., Wood, W. W., J.Stat. Phys. 35:321 (1984). 
15. Dickman, R., Hall, C. K., J.Chem.Phys. 89:3168 (1988)
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c  1  (Nd 1)/2, where Nd is the chain length. In practice, the shape factor is actually correlated with the
acentric factor obtained from experimental data. The attractive term of the ESD equation was derived from
similar comparisons to square-well spheres.16 Note that the effect of nonsphericity is stronger for the attrac-
tive term than the repulsive term by the factor of 1.90476. 

Fugacity Coefficient

The fugacity coefficient is evaluated using Eqn. S-19.1. The first step is to derive the Helmholtz departure,

S-19.54

Differentiating,

S-19.55

16. Sandler, S. I., Lee, K. H., Fluid Phase Equil. 30:135 (1986)

Figure S-19.8 Comparison of molecular simulations, the van der Waals equation, 

and the ESD equation of state for Zrep. Nd is the number of spheres in a
chain.
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Determining the intermediate derivatives,

S-19.56

S-19.57

The first of the derivatives in the right-most expression of Eqn. S-19.57 is of the form of Eqn. S-
19.57, and the second is of the form of Eqn. 15.23, and they can be written by inspection. Combin-
ing,

S-19.58

For a pure fluid, this simplifies to

S-19.59

Extension to Associating Fluids

The extension to associating mixtures is analogous to the discussion above for the van der Waals
equation; we start with the equation for nonassociating fluids, and adapt it by multiplying by xM,
and writing the density in terms of true density.

S-19.60
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where only the denominator of the second term is clearly unaffected; the other terms will be evaluated. We
apply the same mixing rules for the size parameter, bi  i·bM; so, like the van der Waals equation, b  bM/xM,
and bT  bM.

For linear associating species, we assume17

ci cM (i 1)·(cM  0.475)  i(cM  0.475)  0.475 S-19.61

For the repulsive term in the EOS, the value of <cT>  . Therefore, 

4<cT>  

However,

 [i·(cM 0.475) 0.475]  (cM 0.475) /xM 0.475  cM/xM  0.475(1/xM 1) S-19.62

4c  4cM/xM  1.9(1/xM  1) S-19.63

The value we need for the numerator of the second term of Eqn. S-19.60 is xM<4c> 

xM<4c>  4 cM 1.9(1  xM)

For the ESD equation, Yij  Y for the monomer. Considering the attractive term, we will also need to evaluate
qi, which we will show equals i·qM. We keep the definition of qi  1  1.90476 (ci 1), which may be written
qi  1  k3 (ci 1), where, k3  1.90476. Note that 0.475  (k3 1)/ k3, and inserting c from Eqn. S-19.61

qi 1  k3 {ci 1}  1  k3  {i(cM  (k3 1)/ k3)  (k3 1)/ k3 1}  

1  {icMk3  k3i  i  k3  1  k3}  i·[1  k3(cM  1)]  i·qM

Using these results,

and the numerator of the attractive term becomes

The term  in the denominator is independent of association,

, 

The final result is of the form Z  1  Z rep  Z att  Z chem.

17. The motivation for this assumption is discussed in relation to Eqn. S-19.68.
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S-19.64

We can clearly identify

S-19.65

Pure Associating-Fluid Fugacity

For the fugacity of a true monomer, we adapt Eqn. S-19.58,

S-19.66

The summation term becomes . Substituting 4c from
Eqn. S-19.63,

S-19.67

Determination of xM for the ESD Equation

Given the equation of state, we must next solve for the fugacity coefficient of a component in a mixture.
Recalling the definitions of Eqn. S-19.2, and noting that contributions to ln D

att cancel with those of ln
M

att,18

S-19.68

Considering the monomer to dimer step,

S-19.69

Recalling that bD2bM and further assuming that ci  cM (i 1)·(cM  0.475), we obtain

18. In fact, the motivation for Eqn. S-19.61 was to anticipate and ensure cancellation of lni
att, and Eqn. S-19.61 in turn 

motivated k3 = 1.90476.

Z 1
4cM

1 1.9–
--------------------

9.5qMYM
1 1.7745 Y +
---------------------------------------

1.9 1 xM– 
1 1.9–

-------------------------------- 1 xM–+ 
 ––+=

Zchem
1.9P 1 xM– –

1 1.9P– 
-------------------------------------- 1 xM– –

1 xM– –

1 1.9P– 
----------------------------= =

̂Mln
4

1.9
-------cM 1 1.9– ln–

4cbMT

1 1.9–
--------------------

9.5
1.7745
---------------- 1 1.7745 Y + ln

Yb 
------------------------------------------------- YM xj bMqj bjqM+  qYb 

Yb 
---------------YMbM–

j
 

 
 

–

9.5 qYb 
Yb 

-----------------------
YMbMT

1 1.7745 Y +
---------------------------------------– ZTln–

+=

YMbM xiqM
i
 YMqM ibM

i
+ 2YMbMqM xM=

̂Mln
4

1.9
-------cM 1 1.9– ln–

4cMbM
1 1.9–
---------------------

9.5
1.7745
---------------- 1 1.7745 Y + ln qM –

9.5 qYb 
Yb 

-----------------------
YMbM

1 1.7745 Y +
---------------------------------------

1.9 1 xM– 
1 1.9–

--------------------------------–– Zln xMln+–

+=

True fugacity 
coefficient for mono-
mer in a pure asso-
ciating fluid.

!

̂iln
4ci

1.9
------- 1 1.9– ln–

4cbi

1 1.9–
-------------------- ZTln–+=

2 ̂Mln ̂Dln– 2
4cM

1.9
---------- 1 1.9– ln–

4cbM

1 1.9–
-------------------- ZTln–+

4cD

1.9
--------- 1 1.9– ln–

4cbD

1 1.9–
-------------------- ZTln–+–

=

2 ̂Mln ̂Dln–
4 2cM cD– 

1.9
------------------------------– 1 1.9– ln ZTln–=



18 Unit IV Reacting Systems

But, cD  2 cM  2 cM  0.475 2 cM  0.475 and 4(.475)/1.9  1. 

S-19.70

Noting that Eqn. S-19.70 is analogous to Eqn. S-19.30 then,

S-19.71

S-19.72

Helmholtz Energy and the Fugacity Coefficient for the ESD Equation

As with van der Waals equation, we can seek the relationship between the hydrogen bonding and the Helm-
holtz departure. Writing Eqn. S-19.67 for the superficial fugacity coefficient

S-19.73

To obtain Zchem in the equation, we must subtract and add (1 xM)

S-19.74

From this equation, we find that the contribution to Helmholtz energy from association is the same as the
van der Waals equation.

S-19.75

The Temperature Dependence of 

Hydrogen bonding is basically a simple exothermic reaction. As such, its behavior is described by the van’t
Hoff equation. As the temperature goes up, conversion decreases. Since it is a relatively weak reaction,
hydrogen bonding can become very weak at elevated temperatures. To develop more quantitative expres-
sions, we must analyze Ka in detail. We begin by assuming that the term CP is constant with respect to tem-
perature. Then,

S-19.76
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We are free to choose TR  Tc. Then we have 

S-19.77

S-19.78

S-19.79

Setting CP /R 1 and defining a quantity  , we have

S-19.80

The ESD equation provides the following form of , which after some minor rearrangements, we have

Where we have defined Ka' = . Substituting in the expression for  from Eqn. S-19.80, we

obtain

S-19.81

 is thus characterized by the two parameters  Ka' and H. These parameters can be determined by optimizing
the fit to the critical properties and vapor pressure curve of the associating compound. For example Ka' can
be determined from Zc as given in Eqn. S-19.46. Zc, and H can be determined to fit the shape of the vapor
pressure curve. The presence of association tends to raise the vapor pressure at low temperatures relative to
a nonassociating component of the same acentric factor. As an alternative, the values may be determined by
optimizing the fit to other phase equilibrium data. Suresh and Elliott19 showed that the sensitivity of LLE
calculations to the volumetric parameter, bM, can be applied to optimize the fit of LLE for one binary pair
then those parameters for c, /k, bM, H, and Ka' can be applied to a large number of systems. Puhala and
Elliott20 illustrated the point by applying it to 320 binary systems, all correlated to less than 10% error. 

There was a slight evolution in the assumed temperature dependence of  between 1990 and 1992. A
closely related theory based on the statistical mechanics of intermolecular potentials designed to model
hydrogen bonding21 was investigated which suggested an alternative route to describing the thermodynam-
ics of associating mixtures. Wertheim’s theory offers especially powerful routes to relating the microscopic
and macroscopic perspectives. We can build a bridge from the chemical theory to Wertheim’s by examining
the form assumed for CP /R. Recall that we previously assumed CP /R  1 for the van der Waals-associ-
ating fluid and ESD equations. For a molecule which only possesses 2 bonding sites, Wertheim’s theory is
exactly equivalent to the chemical theory if we assume a somewhat more complicated form for CP /R.
Using , the Wertheim formula is:

19. Suresh, S. J., Elliott, J.R. Ind. Eng. Chem. Res. 31:2783 (1992).
20. Puhala, A. S., Elliott, J. R. Ind Eng. Chem Res. 32:3174 (1993).
21. Wertheim, M. S. J. Stat. Phys. 42:477 (1986) and references therein.
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S-19.82

whereby the formula for  takes on a remarkably subtle change.

S-19.83

The superscript “AD” indicates bond formation between a proton acceptor and a donor in the form of a linear
chain. From an engineering perspective, there is little to distinguish the two forms of  other than analyzing
which provides the basis for the most accurate correlations and predictions of engineering phase equilibrium
data. Suresh and Elliott carried out extensive evaluations for hydrocarbon  water and hydrocarbon  alco-
hol systems including LLE as well as VLE. They found that the Wertheim form provided slightly greater
accuracy. 

Pure Component Parameters for the  ESD Equation

The pure component parameters for a number of associating components are given in Table S-19.3, and
many more are given in the computer file esdparms.txt. For any component which does not self-associate
(e.g. ethers, esters, most ketones, and halocarbons as well as hydrocarbons), the equation of state parameters
may be estimated from Tc, Pc, and  in much the same manner as applied in the Peng-Robinson equation:

c  1.0  3.535  0.5332 S-19.84

Zc  (1  0.115/c1/2  0.186/c  0.217/c3/2 0.173/c2)/3 S-19.85

S-19.86

S-19.87

S-19.88

where a  1.9(9.5q k1)4ck1 and k11.7745

In cases of associating compounds, the ESD equation typically imposes the constraint that the critical
temperature be matched and the error in vapor pressure be minimized. For some especially important com-
pounds, like water, the optimization of pure component parameters is broadened to recognize that predic-
tions for mixtures can be sensitive to the choice of pure component parameters. For example, predictions of
water  hydrocarbon liquid-liquid equilibria are very sensitive to the volume parameter for water, b, but
many values of b can give similar accuracy for the vapor pressure of water. Therefore, the value chosen for
the b parameter is the one which optimizes both vapor pressure correlation and liquid-liquid equilibria corre-
lation.

Table 19.3 Pure component parameters for a number of associating components according to the ESD 
equation. More parameters are available in the file esdparms.txt available on the Internet.

Component /k (K) b(cm3/mole) c HB/RTc KAB'

water 427.25 9.412 1.0053 4.00 0.1000

H2S 333.84 11.677 1.0416 2.00 0.0442
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methanol 326.06 20.366 1.1202 5.17 0.0226

ethanol 269.72 23.540 1.5655 4.86 0.0283

1-propanol 242.51 25.124 2.7681 2.50 0.1000

2-propanol 236.54 27.701 2.3148 3.75 0.0500

phenol 354.33 29.996 2.0972 2.14 0.1220

acetone 247.70 30.273 2.1001 0.51 0.1000

Table 19.3 Pure component parameters for a number of associating components according to the ESD 
equation. More parameters are available in the file esdparms.txt available on the Internet.


