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tributions. For example, consider a mixture of three alcohols, with Xi
A = Xi

D and Nd,i=1 for all i.
Numbering the acceptors and donors with the same subscript as their host, Eqn. 19.75 implies that  

 X1
A/n1  Xi

Ax1X1
A11

ADX1
A/n1x2X2

A12
ADX1

A/n2x1X3
A13

ADX1
A/n3 19.83

The only way to fully determine all Xi/nj is to apply Eqn. 19.75 eight more times to obtain nine
equations for the nine unknown values implied by Xi/nj. Once again, Werthiem’s theory seems to
become impractical.

Fortunately, this particular nonlinear system of equations possesses subtle but advantageous
properties. Briefly, there are many symmetries in the calculus that lead to surprising simplifications
when cleverly manipulated. Michelsen and Hendriks showed that Achem/(RT) can be rewritten as
the stationary point of a generalized function  where is minimized and  is maxi-
mized.21 A result of the chemical equilibria is that  /Xi

B = 0, for all i and B, where B is an
acceptor or donor. The beauty of the generalized function is that derivatives with respect to Xi

B can
be separated from derivatives with respect to V or nj. Applying the expansion rule to ,
and using  at the stationary point,

19.84

Similarly,

19.85

The generalized function, , is intentially created by shifting  a manner such
that derivatives with respect to  will cancel and that =  at the stationary point.
Ignoring C-type sites of Eqn. 19.77 for this discussion, summing over sites using xi as in Eqn. 19.75

Q(T, V, n, X) = xiNd,i[ln(Xi
A) + (1 – Xi

A)] + xiNd,i[ln(Xi
D) + (1 – Xi

D)] h/2 19.86

Each site summation has been shifted by xiNd,i(1 – Xi
B)/2. The term h is constructed to cancel

this shift at the stationary point (equilibrium) by using the right hand side of Eqn. 19.75 for each xi.

hiAjDxixjNd,iNd,jXi
AXj

Dij
ADiDjAxixjNd,iNd,jXj

AXi
Dij

DA

hiAjD ninjNd,iNd,jXi
AXj

Dij
AD/n)iDjAninjNd,iNd,jXj

AXi
Dij

DA/n) 19.87

where all x and n are for apparent moles. We can write the extensive expression of Eqn. 19.86, 

(T, V, n, X) = 
iA

niNd,i[ln(Xi
A) + (1 – Xi

A)] + 
iD

niNd,i[ln(Xi
D) + (1 – Xi

D)]  h/2 19.88

The balance Eqn. 19.75 should not be inserted except at the stationary point. Even though the right
and left side of this equation were used to create Q, the equality holds only at the stationary point.
Because  at the stationary point compositions determined by Eqn. 19.75, we
can take advantage of Eqns. 19.84 and 19.86 to obtain,

21. Michelsen, M.L., Hendriks, E.M. 2001. Fluid Phase Equil. 180:165.
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RT·Zchem = –VchemV = PRTQ/PXRTPh/PX

Note that Q and  are not manipulated before differntiation, and remember that only h is density
dependent. Differentiating Eqn. 19.87,

chemPh/PXiA


jD
xixjNd,iNd,jXi

AXj
DPij

AD/P


iD


jA
xixjNd,iNd,jXi

DXj
APij

DA/P 19.89

Combining Eqns. 19.44 and 19.49,  where . To
simply Eqn. 19.89, consider the derivative,

Inserting into 19.89 and recognizing that we can insert 19.75 at the stationary point,

19.90

ln =  /nkXNd,k[ln(Xk
A) + (1 – Xk

A)] + Nd,k[ln(Xk
D) + (1 – Xk

D)] h/nkX19.91

h/nkXxj(Nd,kNd,jXk
AXj

Dkj
AD  Nd,kNd,jXk

DXj
Akj

DA

 xixjNd,iNd,j[Xi
AXj

Dn2ij
AD/n)/nk  Xi

DXj
An2ij

DA/n)/nk
19.92

where all x and n are for apparent moles. Cancellation of terms by Eqn. 19.75 results in

ln = Nd,kln(Xk
A) + Nd,kln(Xk

D)xixjNd,iNd,j[Xi
AXj

Dn2ij
AD/n)/nk  

Xi
DXj

An2ij
DA/n)/nk 19.93

The derivative can be simplified

Inserting into 19.93 and recognizing hsp =  can replace
the quadratic sum, 

19.94

The computational complexity of Eqns. 19.75–19.77 is reduced for the case  with one acceptor and
one donor per molecule assuming ,
which we refer to as the square root combining rule (SRCR). The SRCR is suitable for ij of alco-
hols + aldehydes + water, but not for alcohols + amines. In general, Eqns. 19.75–19.77 require an

Q
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788 Unit IV Reacting Systems

iterative solution, as illustrated in Example 19.7. An initial guess for any j,B adapts the SRCR
method22

19.95

When the SRCR rule is not valid (e.g. alcohols + amines), Eqn. 19.95 can be adapted by replacing
 in the numerator with .

This concludes the theoretical development for the chemical contributions to phase equilib-
rium. Eqns. 19.75–19.77 and 19.90 and 19.94 permit solution of Eqns. 19.1 and 19.2 for mixtures
as well as pure fluids and computation of the fugacity coefficients to perform any phase equilib-
rium determination. Wertheim’s theory of solution thermodynamics is more challenging than that
of van der Waals or local compositions, but it replaces the empirical conjectures of those models
with rigorous analysis that has been verified with molecular simulations. The perspective offered
by Wertheim’s theory will be extended to nonspherical molecules in the following section.  

22. Elliott, J.R. 1996. Ind. Eng. Chem. Res. 35:1624.  To relate Elliott’s variable F to the h used here, F2 = h/2 = 
[xjXj

A(jj
DA)1/2]2.

Example 19.6  Complex fugacity for the van der Waals model

A sample calculation with a specific reference equation of state will clarify application for trime-
thylamine(t) + methanol(m). With At on component t, and Am and Dm on component m, let Ktm

AD

= Kmm
AD = 0.72 cm3/mol and tm

AD = mm
AD = 20 kJ/mol, bt = 27.5 and bm = 20.4 cm3/mol. For

the associating van der Waals equation, assuming chains form,
(a) Derive chem and ln  adapting the definition of Δ from Eqn. 19.44.
(b) Evaluate the expressions at xt = 0.5,  = 0.0141mol/cm3, and T = 300K.
Solution:  (a) For Zchem, we need

19.96

19.97
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19.98

19.99
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b) Because only one acceptor/donor value exists for the specified interactions,  ij
AD =

D(exp(ij
AD) – 1)/(1 – P) = .

b = 0.5·27.5 + 0.5·20.4 = 24.0;   P = 0.0141·24.0 = 0.338 19.100

tm
AD =mm

AD = 0.338/(1 – 0.338)·(0.72/24.0)·(exp(20000/8.314/300) – 1) = 46.4 19.101

To solve Eqns.19.92 for Xt
A, Xm

A, and Xm
D,

1 – Xt
A Xt

AXm
D 19.102

1 – Xm
D Xt

AXm
DXm

AXm
D 19.103

1 – Xm
A Xm

AXm
D 19.104

This gives three equations. Note that Xt
A = Xm

A for this case. We use these in Eqn. 19.103 to
obtain a quadratic equation in terms of Xm

D. Usually, we would need to iterate to solve for Xi
B.

Xt
A = Xm

A = 1/(1 + 0.5Xm
D 19.105

Xm
D = 1/(1 + 0.5Xt

AXm
A) = 1/(1 + Xm

A1/(1 + (1 + 0.5Xm
D)) 19.106

 Xm
D = (1 + 0.5Xm

D)/(1 + Xm
D)) 

Xm
D + Xm

D + 0.5(Xm
D)2= 1 + 0.5Xm

D

Xm
D [1 +   ]/ 19.107

Xm
A = Xt

A = 1/(1 + 0.5·0.·46.4) = 0.520 19.108

This shows that Dm is almost completely bonded. Calculating the sum in Zchem of 19.97, 
hsp = 0.5(1 – 0.52) + 0.5(1 – 0.52) + 0.5(1 – 0.0397)] = 0.960

Zchem = –0.5hsp/(1 – P) = –0.480/(1 – 0.338) = –0.725
By Eqn. 19.99, recognizing Zchem within the last term of each

ln  = ln(Xt
A)hspbtP–0.6539 – 0.725(27.5)(0.0141) = 

ln = ln(Xm
A) + ln(Xm

D) hsp bmP
 –0.6539 – 3.226 – 0.725(20.4)(0.0141) = –4.09

There are several points of interest in this result. The acceptors in this mixture outnumber donors
by two to one. Therefore, it is impossible that Xi

A< 0.5, and, in fact, Xm
D ~ 2·(Xt

A – 0.5) because
the lack of donor saturation is reflected twice, in Xt

A and Xm
A.   The compressibility factor is

depressed in a simple way that sums over all donors and acceptors, but the fugacity is depressed
more for the alcohol than for the amine. There are two ways for the alcohol to interact, but only
one for the amine, so the depression of the fugacity is much greater. On the other hand, the fugac-
ity of the alcohol is depressed less in the mixture than in the pure fluid because relatively fewer
acceptors are bonded (ln = –6.105 at xm = 1). So the mixture activity for the alcohol is
enhanced by less hydrogen bonding relative to the pure component, while the activity of the
amine is depressed by more hydrogen bonding at all compositions relative to the pure component.

Example 19.6  Complex fugacity for the van der Waals model (Continued)

1  2+ 2 2+

̂t
chem 

̂m
chem 

̂m
chem 
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790 Unit IV Reacting Systems

19.9 WERTHEIM’S THEORY OF POLYMERIZATION

Now that we have an accounting for the thermodynamics of bond formation, it is natural to wonder
what happens to the thermodynamics as the bond energy approaches infinity. This would be a natu-

Example 19.7  More complex fugacity for the van der Waals model 

Evaluate the expressions for chem and ln  of trimethylamine(t) + methanol(m) at
xt = 0.4,  = 0.0141 mol/cm3, and T = 300 K. With At on component t, and Am and Dm on compo-
nent m, let Ktm

AD = Kmm
AD = 0.72 cm3/mol and 1.25tm

AD = mm
AD = 20 kJ/mol, bt = 27.5, and bm

= 20.4 cm3/mol. 

Solution: The difference between this example and the previous is that  tm
AD  mm

AD, indicat-
ing that the amine + alcohol is slightly weaker than the alcohol + alcohol association. Because

of this lack of symmetry, an iterative solution for Xi
B is required.

Substituting the mole fractions and solving for ’s,
 b = 0.4·27.5 + 0.6·20.4 = 23.4; P= 0.0141·23.4 = 0.328. This is slightly less than Eqn 19.100.

mm
AD = mm

D(exp(mm
AD) – 1)/(1 – P) = 45.8;  tm

AD = 9.21; tt
DA = tm

DA = 0.

1 – Xt
A Xt

AXm
D12

AD1 – Xm
D Xm

DXt
Atm

ADXm
DXm

Amm
AD

1 – Xm
A Xm

AXm
Dmm

AD  rearranging all three:

 Xt
A = 1/(1 + 0.6Xm

Dtm
AD); Xm

A = 1/(1 + 0.6Xm
Dmm

AD) ; 

Xm
D = 1/(1 + 0.4Xt

Atm
ADXm

Atm
AD) ; 

Unlike the previous example, an explicit solution is not found. The previous example was con-
trived to achieve an exact solution, but this is rarely possible. Normally, we must iterate to
achieve a numerical solution. It is convenient to guess Xm

D, then compute Xt
A and Xm

A, then use
successive substitution to converge all  Xi

B. Adapting Eqn. 19.95 for the non-SRCR case, 

1/Xm
D  1 +   ) + 0.6(45.8)/(  ) = 8.218 Xm

D =0.122; 

Xt
AXm

AXm
D

Eleven more iterations gives Xt
AXm

AXm
DThe large number of iter-

ations is necessary because this particular mixture deviates substantially from the SRCR.

Xt
A = 1/(1 + 0.6·0.·9.21)= 0.677 

Xm
A = 1/(1 + 0.6·0.·45.8)= 0.296 

Xm
D = 1/(1 + 0.4·0.·9.21 + 0.6·0.·45.8) = 0.086

Calculating the sum in Zchem of 19.97, 
hsp= 0.4(1 – 0.677) + 0.6(1 – 0.296) + 0.6(1 – 0.086)]= 1.100

Zchem = 0.5hsp/(1 – P) = 0.55/(1 – 0.328) = 0.818
ln  = ln(Xt

A) hspbtP–0.390 –0.55(27.5)(0.0141)/(0.672)  

ln  = ln(Xm
A) + ln(Xm

D) hspbmP

These results show that a 20% decrease in tm
AD compared to Example 19.6 gives a 80%

decrease in tm
AD. That is fairly sensitive. This change in tm

AD is primarily responsible for the
increase in Xt

A from 0.52 to 0.68 and the decrease of Xm
A from 0.520 to 0.30.

̂k
chem 

0 45.8

̂t
chem 

̂m
chem 
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ral limit for covalent bond formation. Having a theoretical basis for nonspherical molecules would
be a big step forward, considering that all theories discussed until now have been based on spheri-
cal molecules. Of course, we added correction terms like (T, ) to the Peng-Robinson model, but
this was done with no theoretical basis. Wertheim’s theory provides an opportunity to develop
meaningful guidelines for shape effects. 

The key step is to find the contribution to the equation of state from forming a bond in the limit
of infinite bond energy. The result for dimerization, Eqn. 19.54, is convenient to illustrate the key
points. At first glance, the limit may not seem obvious, because the X term in Achem must approach
zero and the log term would then be undefined. This issue can be resolved by substituting, 1 – X =
X2Δ. We use Abond to denote the covalent nature of the bonds and take the limit of no monomer.

 19.109

Eqn. 19.109 is helpful when Δbecause Zbond can be obtained by differentiation of Abond.
Referring to Eqns. 19.44 and 19.49 and taking the derivative,

19.110

From a model for g(r), the bonding contribution to the EOS results. For example, if g(r) is given by
the van der Waals model, 

19.111

Generalizing this result to a polymer chain with m segments, there are (m–1) bonds per chain. For
example, continuing with the vdW model,

19.112

This is essentially Wertheim’s theory of polymerization, although Wertheim specifically treated the
case resulting in a mixture with a range of molecular weights and average degree of polymerization
of <m>.23

19.10 STATISTICAL ASSOCIATING FLUID THEORY 
(THE SAFT MODEL) 

Shortly after Wertheim’s work appeared, Chapman et al. formulated an equation of state that incor-
porated the bonding contribution and complexation as well as the disperse repulsive and attractive
terms. Their perspective was to treat any solution in the conventional way as a fluid of independent
spheres, then to add the bonding contribution required to assemble the spheres into chains. Then the
equation of state becomes

Z = mZHS + (m – 1)Zbond + mZatt + Zchem 19.113

23. Wertheim, M.S. 1986. J. Stat. Phys. 42:459.
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